Year 9 Geography

Term	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
1 The challenge of natural hazards Tectonic Hazards	Definition of a natural hazard. Types of natural hazard. Factors affecting hazard risk.	Plate tectonics theory. Global distribution of earthquakes and volcanic eruptions and their relationship to plate margins.	Plate tectonics theory. Global distribution of earthquakes and volcanic eruptions and their relationship to plate margins.	Primary and secondary effects of a tectonic hazard. Immediate and long- term responses to a tectonic hazard. Use named examples to show how the effects and responses to a tectonic hazard vary between two areas of contrasting levels of wealth.	Earthquakes: • LICs: Kashmir , Pakistan (2005), Haiti (2010), Nepal (2015) • NEEs: Gujarat, India (2001), Sichuan, China (2008)	Economically advanced countries: Kobe, Japan (1985) Loma Prieta, California (1989), L'Aquila, Italy (2009)	 Volcanic eruptions: LIC: Mount Pinatubo, Philippines (1991) Soufrier Hills, Montserrat (1995) Sinabung, Indonesia (2014). 	Teacher assessment of refinement s. Exam Question – AQA 12 mark question on hazards

Term 2 Weather Hazards	Reasons why people continue to live in areas at risk from a tectonic hazard. How we can reduce the risks from a tectonic hazard.	New Topic / Global atmospheric circulation helps determine patterns of weather and climate.	Tropical storms (hurricanes, cyclones, typhoons) develop as a result of particular physical conditions.	Global distribution of tropical storms (hurricanes, cyclones, typhoons).	Tropical storms have significant effects on people and the environment.	Hurricanes: • Andrew (1992) • Katrina (2005) • Ike (2008) • Sandy (2012) C	Extreme weather events in the UK have impacts on human activity.	Assessment Exam question on Extreme weather
Cllimate Change	Evidence for climate change from the beginning of the Quaternary period to the present day.	Managing climate change involves both mitigation (reducing causes) and adaptation (responding to change).	Possible causes of climate change. Natural factors: orbital changes, volcanic activity and solar output.	Human factors: use of fossil fuels, agriculture and deforestatio n.	Overview of the effects of climate change on people and the environment.	Students create living concept map. Tables covered with paper to allow student to write with marker pens. Small box of props/pictures given to each table, with objects that relate to management of climate change ie child's paper windmill to represent wind power, or Lego house on stilts to represent adaptation to rising sea levels Development of hot	Class makes a set of notes together based on ideas and discussion arising from the living concept map. Alternatively, spilt class into two groups to cover mitigation and adaptation separately. Discuss the difference in approaches. Group discussion: Discuss differences to draw out the ideas of mitigation of climate change and adaptation to climate change.	Assessment on Climate change Exam questions

4 Ecosystems	Ecosystems exist at a range of scales and involve the interaction between biotic and abiotic components.	Tropical rainforest ecosystems have a range of distinctive characteristics.	Deforestation has economic and environment al impacts.	Tropical rainforests need to be managed to be sustainable.	The physical characteristics of a hot desert.	desert environments creates opportunities and challenges.	of hot deserts are at risk of desertification.	on Ecosystems and deserts
Cold Environment s	Cold environments (polar and tundra) have a range of distinctive characteristic s.	Development of cold environments creates opportunities and challenges.	Cold environment s are at risk from economic development	Coastal landscapes in the Uk The coast is shaped by a number of physical processes	Distinctive coastal landforms are the result of rock type, structure and physical processes.	Holderness coast Studland Bay Barton on Sea Walton on the Naze Lyme Regis Medmerry – West	Assessment – Cold environments and coasts	
6 Rivers	The long profile and changing cross profile of a river and its valley.	 Fluvial processes: erosion – hydraulic action, abrasion, attrition, solution, vertical and lateral erosion transportation – 	Distinctive fluvial landforms result from different physical processes	Different management strategies can be used to protect river landscapes from the effects of flooding.	Glaciation Ice was a powerful force in shaping the physical landscape of the UK.	Distinctive glacial landforms result from different physical processes.	Glaciated upland landscapes provide opportunities for different economic activities, and management strategies can be used to reduce land use conflicts.	Assessment Rivers and Glaciation

traction,			
saltation,			
suspension and			
solution			
deposition – why rivers deposit sediment.			
deposit sediment.			