

Key: *Bold writing shows development or progression from previous year. *<u>Underline</u> shows cross-over of key concepts with other end-points

Faculty: Science		Subject: Biology	
End points	Year 11	Year 12	Year 13
End points Understanding of core concepts of "the cell"	Year 11 •stem cells in animals and meristems in plants •enzymes •factors affecting the rate of enzymatic reactions •carbohydrates, proteins, nucleic acids and lipids as key biological molecules	 Year 12 Biology is the study of living organisms. Every living organism is made up of one or more cells, therefore understanding the structure and function of the cell is a fundamental concept in the study of biology. The cells of all living organisms are composed of biological molecules. Proteins, carbohydrates and lipids are three of the key groups of biological macromolecules that are essential for life. A study of the structure of these macromolecules allows a better understanding of their functions in living organisms. Nucleic acids are essential to heredity in living organisms. Understanding the structure of nucleotides and nucleic acids allows an understanding of their roles in the storage and use of genetic information and cell metabolism. Metabolism in living organisms relies upon enzyme controlled reactions. Knowledge of how enzymes function and the factors that affect enzyme action has improved our understanding of biological processes and increased our use of enzymes in industry. Membranes are fundamental to the cell theory. The structure of the plasma membrane allows cells to communicate with each other. Understanding this ability to communicate is important as scientists increasingly make use of membrane-bound receptors as sites for the action of medicinal drugs. 	Year 13

	During the cell cycle, genetic information is copied and passed to daughter cells. Microscopes can be used to view the different stages of the cycle. In multicellular organisms, stem cells are modified to produce many different types of specialised cell. Understanding how stem cells can be modified has huge potential in medicine. To understand how a whole organism functions, it is essential to appreciate the importance of cooperation between cells, tissues, organs and organ systems.	
NC/Spec coverage	NC/Spec coverage H420 MODULE 2 Foundations in Biology 2.1.1 Cell Structure 2.1.2 Biological molecules 2.1.3 Nucleotides and nucleic acids 2.1.4 Enzymes 2.1.5 Biological membranes 2.1.6 Cell division, cell diversity and cellular organisation	NC/Spec coverage

Appreciation of the function of multicellular organisms	 the need for transport systems in multicellular organisms, including plants the relationship between the structure and functions of the human circulatory system nervous coordination and control in humans the structure and function of the human nervous system the structure and function in a reflex arc hormonal coordination and control in humans hormones in human reproduction, hormonal and non-hormonal methods of contraception homeostasis 	As animals become larger and more active, ventilation and gas exchange systems become essential to supply oxygen to, and remove carbon dioxide from, their bodies. Ventilation and gas exchange systems in mammals, bony fish and insects are used as examples of the properties and functions of exchange surfaces in animals. As animals become larger and more active, transport systems become essential to supply nutrients to, and remove waste from, individual cells. Controlling the supply of nutrients and removal of waste requires the coordinated activity of the heart and circulatory system. As plants become larger and more complex, transport systems become essential to supply nutrients to, and remove waste from, individual cells. The supply of nutrients from the soil relies upon the flow of water through a vascular system, as does the movement of the products of photosynthesis.	Organisms use both chemical and electrical systems to monitor and respond to any deviation from the body's steady state. The kidneys, liver and lungs are all involved in the removal of toxic products of metabolism from the blood and therefore contribute to homeostasis. The kidneys play a major role in the control of the water potential of the blood. The liver also metabolises some toxins that are ingested. The stimulation of sensory receptors leads to the generation of an action potential in a neurone. Transmission between neurones takes place at synapses. The ways in which specific hormones bring about their effects are used to exemplify endocrine communication and control. Treatment of diabetes is used as an example of the use of medical technology in overcoming defects in hormonal control systems. Plant responses to environmental changes are coordinated by hormones, some of which are important commercially. In animals, responding to changes in the environment is a complex and continuous process, involving nervous, hormonal and muscular coordination. Photosynthesis is the process whereby light from the Sun is harvested and used to drive the production of chemicals, including ATP, and used to synthesise large organic molecules from inorganic molecules Respiration is the process whereby energy stored in complex organic molecules is transferred to ATP. ATP

		provides the immediate source of energy for biological processes.
NC/Spec coverage	NC/Spec coverage H420 MODULE 3 Exchange and Transport 3.1.1 Exchange Surfaces 3.1.2 Transport in animals 3.1.3 Transport in plants	NC/Spec coverage H420 MODULE 5 Communication, homeostasis and energy 5.1.1 Communication and homeostasis 5.1.2 Excretion as an example of homeostatic control 5.1.3 Neuronal communication 5.1.4 Hormonal communication 5.1.5 Plant and animal responses 5.2.1 Photosynthesis 5.2.2 Respiration

Understanding of	 the genome as the entire genetic 		
how organisms	material of an organism	Organisms are surrounded by pathogens and have	The way in which cells control metabolic reactions
interact with each	 how the genome and <u>environment</u> 	evolved defences against them. Medical intervention	determines how organisms, grow, develop and
other and with	influence the development of the	can be used to support these natural defences. The	function.
their	phenotype of an organism	mammalian immune system is introduced.	
environment	• the potential impact of genomics on		Isolating mechanisms can lead to the accumulation of
	medicine	Biodiversity refers to the variety and complexity of	different genetic information in populations,
	•most phenotypic reatures being the	life. It is an important indicator in the study of	potentially leading to new species. Over a prolonged
	genes	habitats. Maintaining biodiversity is important for	period of time, organisms have changed and some
	•single gene inheritance and single	many reasons. Actions to maintain biodiversity must	have become extinct. The theory of evolution explains
	gene crosses with dominant and	be taken at local, national and global levels.	these changes. Humans use artificial selection to
	recessive phenotypes		produce similar changes in plants and animals
	•sex determination in humans	Evolution has generated a very wide variety of	
	•genetic variation in populations of a	organisms. The fact that all organisms share a	Genome sequencing gives information about the
	species	common ancestry allows them to be classified.	location of genes and provides evidence for the
	• <u>the process of natural selection</u>	Classification is an attempt to impose a hierarchy on	evolutionary links between organisms. Genetic
	leading to evolution	the complex and dynamic variety of life on Earth.	engineering involves the manipulation of naturally
	• the evidence for evolution	Classification systems have changed and will	occurring processes and enzymes. The capacity to
	•developments in biology affecting	continue to change as our knowledge of the biology	manipulate genes has many potential benefits, but
	eselective breeding of plants and	of organisms develops.	the implications of genetic techniques are subject to
	animals in agriculture		much public debate
	•the uses of modern biotechnology		
	including gene technology		Farmers and growers exploit "natural" vegetative
	 some practical and ethical 		propagation in the production of uniform crops.
	considerations of modern		Artificial clones of plants and animals can now be
	biotechnology		produced. Biotechnology is the industrial use of living
			organisms (or parts of living organisms) to produce
			food, drugs or other product.
			Organisms do not live in isolation but engage in
			complex interactions, not just with other organisms
			but also with their environment. The efficiency of
			biomass transfer limits the number of organisms that
			can exist in a particular ecosystem. Ecosystems are
			dynamic and tend towards some form of climax
			community
			There are many factors that determine the size of a
			population. For economic, social and ethical reasons

		ecosystems may need to be carefully managed. To support an increasing human population, we need to use biological resources in a sustainable way.
NC/Spec coverage	NC/Spec coverage H420 MODULE 4 Biodiversity, evolution and disease 4.1.1 Communicable disease, disease prevention and the immune system 4.2.1 Biodiversity 4.2.2 Classification and Evolution	NC/Spec coverage H420 MODULE 6 Genetics, evolution and ecosystems 6.1.1 Cellular control 6.1.2 Patterns of inheritance 6.1.3 Manipulating genomes 6.1.4 Cloning and biotechnology 6.3.1 Ecosystems 6.3.2 Populations and sustainability

Understanding of	• explaining every day and	
now to structure	technological applications of science	Practical skills delivered throughout the course across the two years. Only formally assessed at the end of Y13 and via
scientific	 appreciating the power and 	the PAGs (practical assessed grades)
nvestigations	limitations of science	
	 recognizing the importance of peer 	
	review of results	
	 using scientific theories and 	
	explanations to develop hypotheses	
	 make predictions using scientific 	
	knowledge and understanding	
	 select, plan and carry out the most 	
	appropriate types of scientific enquiries	
	to test predictions	
	 applying a knowledge of a range of 	
	techniques, apparatus, and materials to	
	select those appropriate both for	
	fieldwork and for experiments	
	 consider the accuracy of 	
	measurements	
	 be aware of health and safety 	
	considerations	
	• present reasoned explanations in	
	relation to predictions and	
	hypotheses	
	•evaluate data showing awareness of	
	potential sources of random and	
	systematic error	
	• <u>carry out and represent</u>	
	eroprosont distributions of results and	
	making estimations of uncertainty	
	•communicate the scientific rationale	
	for investigations including the	
	methods used the findings and	
	reasoned conclusions using paper-	
	based and electronic reports and	
	presentations	
	NC/Spec coverage	NC/Spec coverage
		Module 1 Development of practical skills in biology
		1.1.1 Planning 1.1.2 Implementing 1.1.3 Analysis 1.1.4 Evaluation

Having a good grasp of numerical, analytical and literacy skills in order to communicate scientific ideas effectively	 developing their use of scientific nomenclature understanding how scientific quantities are determined using IUPAC chemical nomenclature unless inappropriate interconverting units using an appropriate number of significant figures in calculations 	Partially met through the practical skills delivered through assessed at the end of Y13 and via the PAGs (practical asse Also seen via the integrated mathematical skills	but the course across the two years. Only formally ssed grades)	
	NC/Spec coverage	NC/Spec coverage	NC/Spec coverage	