Key: *Bold writing shows development or progression from previous year. *<u>Underline</u> shows cross-over of key concepts with other end-points

Faculty: Science		Subject: A'level Physics	Subject: A'level Physics	
End points	Year 11	Year 12	Year 13	
Understanding of how all interactions in the Universe are reliant on forces being exchanged between two or more bodies, and that these force interactions are inextricable from the corresponding energy and momentum conservation within systems.		 This section provides knowledge and understanding of key ideas used to describe and analyse the motion of objects in both one- dimension and in two-dimensions. It also provides learners with opportunities to develop their analytical and experimental skills. The motion of a variety of objects can be analysed using ICT or data-logging techniques (HSW3). Learners also have the opportunity to analyse and interpret experimental data by recognising relationships between physical quantities (HSW5). The analysis of motion gives many opportunities to link to How Science Works. Examples relate to detecting the speed of moving vehicles, stopping distances and freefall (HSW2, 9, 10, 11, 12). This section provides knowledge and understanding of the motion of an object when it experiences several forces and also the equilibrium of an object. Learners will also learn how pressure differences give rise to an upthrust on an object in a fluid. There are opportunities to consider contemporary applications of terminal velocity, moments, couples, pressure, and Archimedes principle (HSW6, 7, 9, 11, 12). Experimental work must play a pivotal role in the acquisition of key concepts and skills (HSW4). 	 There are many examples of objects travelling at constant speed in circles, e.g. planets, artificial satellites, charged particles in a magnetic field, etc. The physics in all these cases can be described and analysed using the ideas developed by Newton. The concepts in this section have applications in many contexts present in other sections of this specification, such as planetary motion in section 5.4.3 (HSW1, 2, 5, 9). This section provides knowledge and understanding of circular motion and important concepts such as centripetal force and 	

		This section provides knowledge and understanding of Newton's laws – fundamental laws that can be used to predict the motion of all colliding or interacting objects in applications such as sport (HSW1, 2). Newton's law can also be used to understand some of the safety features in cars, such as air bags, and to evaluate the benefits and risks of such features (HSW9). Learners should be aware that the introduction of mandatory safety features in cars is a consequence of the scientific community analysing the forces involved in collisions and investigating potential solutions to reduce the likelihood of personal injury (HSW10, 11, 12). There are many opportunities for learners to carry out experimental work and analyse data using ICT techniques (HSW3).	This section provides knowledge and understanding of Newton's law of gravitation, planetary motion and gravitational potential and energy. Newton's law of gravitation can be used to predict the motion of orbiting satellites, planets and even why some objects in our Solar system have very little atmosphere with the opportunity to analyse evidence and look at causal relationships (HSW1, 2, 5, 7). Geostationary satellites have done much to improve telecommunications around the world. They are expensive; governments and industry have to make difficult decisions when building new ones. Learners have the opportunity to discuss the societal benefits of satellites and the risks they pose when accidents do occur (HSW9, 10).
	NC/Spec coverage	 NC/Spec coverage Motion Forces in action Newton's laws of motion and momentum 	 NC/Spec coverage Gravitational fields Electric fields Circular motion Oscillations
Understanding of how all matter is made up of tiny particles, significantly smaller than the cells studied in biology. The particles are always moving, have spaces between them,		This section examines the physical properties of springs and materials. Learners can carry out a range of experimental work	This section provides knowledge and understanding of temperature, matter, specific heat capacity and specific latent heat with contexts

WFA Progression Map - planning for knowledge/skills etc to build & accumulate sequentially over time

Weston Favell Academy

			WESTON TAVELE ACAD
and adding heat to them makes them		to enhance their knowledge and skills, including	involving heat transfer and change
move faster. How the particles are		the	of phase (HSW1, 2, 5, 7).
arranged and move dictates the state		management of risks and analysis of data to	Experimental work can be carried
and properties of the macroscopic		provide	out to safely investigate specific
substances we interact with every		evidence for relationships between physical	heat capacity of materials (HSW4).
day.		quantities.	It also provides an opportunity to
		There are opportunities to consider the	discuss how Newton's laws can be
		selection of	used to model the behaviour of
		appropriate materials for practical applications	gases (HSW1) and significant
		(HSW5, 6, 8, 9, 12).	opportunities
	NC/Spec coverage	NC/Spec coverage	NC/Spec coverage
		Materials	Thermal physics
Understanding that the atoms that			
contribute to particle theory are			This section provides knowledge
themselves composed of even smaller			and understanding of
particles. The compositions and			the atom, nucleus, fundamental
arrangements of these smaller			particles, radioactivity,
particles dictates the chemical			fission and fusion.
properties of substances, and			Nuclear power stations provide a
changing these can lead to drastic and			significant fraction
unexpected energy changes.			of the energy needs of many
, , , ,			countries. They are
			expensive; governments have to
			make difficult
			decisions when building new ones.
			The building
			of nuclear power stations can be
			used to evaluate
			the benefits and risks to society
			(HSW9). Ethical,
			environmental and decision
			making issues may also
			be discussed (HSW10 and HSW12).
			The development
			of the atomic model also addresses
			issues of scientific

			development and validation (HSW7, 11).
	NC/Spec coverage	NC/Spec coverage	 NC/Spec coverage Quantum physics Nuclear and particle physics
Understanding that all particles carry an abstract quantity labelled as energy that can be stored in different stores, which can be transferred between stores or between systems but is always conserved. In some forms energy cannot be observed and has the potential to do work; in others it causes movement of particles or whole systems.		Words like energy, power and work have very precise meaning in physics. In this section the important link between work done and energy is explored. Learners have the opportunity to apply the important principle of conservation of energy to a range of situations. The analysis of energy transfers provides the opportunity for calculations of efficiency and the subsequent evaluation of issues relating to the individual and society (HSW2, 5, 8, 9, 10, 11, 12).	
	NC/Spec coverage	 NC/Spec coverage Work, energy and power 	NC/Spec coverage
Understanding that energy can be transferred through media in the form of waves, with no net transfer of matter. Waves can interact with matter and with one another in a multitude of ways with predictable, if unintuitive, outcomes.		This section provides knowledge and understanding of wave properties, electromagnetic waves, superposition and stationary waves. The wavelength of visible light is too small to be measured directly using a ruler.However, superposition experiments can be done in the laboratory to determine wavelength of visible light using a laser and a double slit. There are opportunities to discuss how the double-slit experiment demonstrated the wave- like behaviour of light (HSW7). The breadth of the topic covering sound waves and the electromagnetic spectrum provides scope for learners to appreciate the wide	This section provides knowledge and understanding of X-rays, CAT scans, PET scans and ultrasound scans. This section shows how the developments in medical imaging have led to a number of valuable non-invasive techniques used in hospitals. Not all hospitals in this country are equipped with complex scanners. Learners have the chance to discuss

Weston Favell Academy

		ranging applications of waves and their	the ethical issues in the treatment
		properties. (HSW1, 2, 5, 8, 9, 12)	of humans and the
			ways in which society uses science
		This section provides knowledge and	to inform decision
		understanding of photons, the photoelectric	making (HSW10 and 12).
		effect, de Broglie waves and wave-particle	
		duality. In the photoelectric effect experiment,	
		electromagnetic waves are used to eject surface	
		electrons from metals. The electrons are ejected	
		instantaneously and their energy is independent	
		of the intensity of the radiation. The wave	
		model is unable to explain the interaction of	
		these waves with matter. This single experiment	
		led to the development of the photon model	
		and was the cornerstone of quantum physics.	
		Learners have the opportunity to carry out	
		internet research into how the ideas of quantum	
		physics developed (HSW1, 2, 7) and	
		how scientific community validates the integrity	
	NC/Spec coverage	NC/Spec coverage	NC/Spec coverage
		Waves	Medical imaging
		Quantum physics	
Understanding that the two fields of		The aim of this module is to ultimately introduce	
Understanding that the two fields of electricity and magnetism are		The aim of this module is to ultimately introduce key ideas of quantum physics. Electromagnetic	This section introduces the basic
-			This section introduces the basic properties of capacitors and how
electricity and magnetism are		key ideas of quantum physics. Electromagnetic	
electricity and magnetism are fundamentally and invariably linked, and as a result, the flow of electrically		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They	properties of capacitors and how
electricity and magnetism are fundamentally and invariably linked,		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They exhibit both wave and particle-like behaviour.	properties of capacitors and how they are used in electrical circuits.
electricity and magnetism are fundamentally and invariably linked, and as a result, the flow of electrically charged objects results in the		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They exhibit both wave and particle-like behaviour. The wave–particle dual nature is also found to	properties of capacitors and how they are used in electrical circuits. The use of capacitors as a source of
electricity and magnetism are fundamentally and invariably linked, and as a result, the flow of electrically charged objects results in the existence of corresponding magnetic		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They exhibit both wave and particle-like behaviour. The wave-particle dual nature is also found to be characteristic of all particles (e.g. electrons). Before any sophisticated work can be done on	properties of capacitors and how they are used in electrical circuits. The use of capacitors as a source of electrical energy is then developed.
electricity and magnetism are fundamentally and invariably linked, and as a result, the flow of electrically charged objects results in the existence of corresponding magnetic		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They exhibit both wave and particle-like behaviour. The wave-particle dual nature is also found to be characteristic of all particles (e.g. electrons). Before any sophisticated work can be done on quantum physics, learners need to appreciate	properties of capacitors and how they are used in electrical circuits. The use of capacitors as a source of electrical energy is then developed. This section introduces
electricity and magnetism are fundamentally and invariably linked, and as a result, the flow of electrically charged objects results in the existence of corresponding magnetic		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They exhibit both wave and particle-like behaviour. The wave-particle dual nature is also found to be characteristic of all particles (e.g. electrons). Before any sophisticated work can be done on quantum physics, learners need to appreciate what electrons are and how they behave in	properties of capacitors and how they are used in electrical circuits. The use of capacitors as a source of electrical energy is then developed. This section introduces the mathematics of exponential
electricity and magnetism are fundamentally and invariably linked, and as a result, the flow of electrically charged objects results in the existence of corresponding magnetic		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They exhibit both wave and particle-like behaviour. The wave-particle dual nature is also found to be characteristic of all particles (e.g. electrons). Before any sophisticated work can be done on quantum physics, learners need to appreciate what electrons are and how they behave in electrical circuits. A basic understanding of wave	properties of capacitors and how they are used in electrical circuits. The use of capacitors as a source of electrical energy is then developed. This section introduces the mathematics of exponential decay, which is also required for
electricity and magnetism are fundamentally and invariably linked, and as a result, the flow of electrically charged objects results in the existence of corresponding magnetic		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They exhibit both wave and particle-like behaviour. The wave-particle dual nature is also found to be characteristic of all particles (e.g. electrons). Before any sophisticated work can be done on quantum physics, learners need to appreciate what electrons are and how they behave in electrical circuits. A basic understanding of wave properties is also required.	properties of capacitors and how they are used in electrical circuits. The use of capacitors as a source of electrical energy is then developed. This section introduces the mathematics of exponential decay, which is also required for the decay of radioactive nuclei in 6.4.
electricity and magnetism are fundamentally and invariably linked, and as a result, the flow of electrically charged objects results in the existence of corresponding magnetic		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They exhibit both wave and particle-like behaviour. The wave-particle dual nature is also found to be characteristic of all particles (e.g. electrons). Before any sophisticated work can be done on quantum physics, learners need to appreciate what electrons are and how they behave in electrical circuits. A basic understanding of wave properties is also required. In this module, learners will learn about	properties of capacitors and how they are used in electrical circuits. The use of capacitors as a source of electrical energy is then developed. This section introduces the mathematics of exponential decay, which is also required for the decay of radioactive nuclei in 6.4. This section provides knowledge
electricity and magnetism are fundamentally and invariably linked, and as a result, the flow of electrically charged objects results in the existence of corresponding magnetic		key ideas of quantum physics. Electromagnetic waves (e.g. light) have a dual nature. They exhibit both wave and particle-like behaviour. The wave-particle dual nature is also found to be characteristic of all particles (e.g. electrons). Before any sophisticated work can be done on quantum physics, learners need to appreciate what electrons are and how they behave in electrical circuits. A basic understanding of wave properties is also required.	properties of capacitors and how they are used in electrical circuits. The use of capacitors as a source of electrical energy is then developed. This section introduces the mathematics of exponential decay, which is also required for the decay of radioactive nuclei in 6.4.

Weston Favell Academy

Leave and have the average of the second state	Free autors and a local state of the second
Learners have the opportunity to appreciate	Experimental work provides an
how scientific ideas of quantum physics	excellent way to understand the
developed over time (HSW7) and their validity	behaviour of capacitors in electrical
rested on the foundations of experimental work	circuits and the management of
(HSW1 and HSW2).	safety and risks
	when using power supplies
This short section introduces the ideas of charge	(HSW4). There are many
and current. Understanding electric current is	opportunities for learners to use
essential when dealing with electrical circuits.	spreadsheets in the analysis and
This section does not lend itself to practical	presentation of data (HSW3). The
work but to introducing important ideas. The	varied uses of capacitors give the
continuity equation (I = Anev) is developed using	opportunity for the consideration
these key ideas. This section concludes with	of their use in many practical
categorising all materials in terms of	applications (HSW2, 5, 6, 9)
their ability to conduct.	
-	This section provides knowledge
This section provides knowledge and	and understanding
understanding of electrical circuits, internal	of Coulomb's law, uniform electric
resistance and potential dividers. LDRs and	fields, electric
thermistors are used to show how changes in	potential and energy.
light intensity and temperature respectively	
can be monitored using potential dividers.	This section provides knowledge
Setting up electrical circuits, including potential	and understanding
divider circuits, provides an ideal way of	of magnetic fields, motion of
enhancing experimental skills, understanding	charged particles
electrical concepts and managing risks when	in magnetic fields, Lenz's law and
using power supplies (HSW4). Learners are	Faraday's law.
encouraged to communicate scientific ideas	The application of Faraday's law
using appropriate terminology (HSW8).	may be used to
This section provides ample opportunities for	demonstrate how science has
learners to design circuits and carry out	benefited society
appropriate testing for faults and there are	with important devices such as
opportunities to study the many applications of	generators and
electrical circuits (HSW1, 2, 3, 5, 6,9, 12).	transformers. Transformers are
· · · · · · · ·	used in the
	transmission of electrical energy
	using the national

	NC/Spec coverage	NC/Spec coverage • Charge and current • Energy, power and resistance • Electrical circuits	grid and are an integral part of many electrical devices in our homes. The application of Lenz's law allows discussion of the use of scientific knowledge to present a scientific argument (HSW1, 2, 3, 5, 6, 7, 8, 9, 11, 12). NC/Spec coverage • Capacitors • Electric fields • Electromagnetism
 Understanding that physics uses models to approximate theories, (given assumptions), and that these are those that best fit the empirical evidence known at a given time, and an appreciation of the scientific method of approach to validating and testing theories. 			The aim of this module is to show the impact Newtonian mechanics has on physics. The microscopic motion of atoms can be modelled using Newton's laws and hence provide us with an understanding of macroscopic quantities such as pressure and temperature. Newton's law of gravitation can be used to predict the motion of planets and distant galaxies. In the final section we explore the intricacies of stars and the expansion of the Universe by analysing the electromagnetic radiation from space. As such, it lends itself to the consideration of how the development of the scientific model is improved based on the advances

			in the means of observation (HSW1, 2, 5, 6, 7, 8, 9, 11). In this module, learners will learn about thermal physics, circular motion, oscillations, gravitational field, astrophysics and cosmology.
	NC/Spec coverage	NC/Spec coverage	This section provides knowledge and understanding of stars, Wien's displacement law, Stefan's law, Hubble's law and the Big Bang. Learners have the opportunity to appreciate how scientific ideas of the Big Bang developed over time and how its validity is supported by research and experimental work carried out by the scientific community (HSW2, 7, 8, 11).
	NC/Spec coverage	NC/Spec coverage	 Astrophysics and cosmology
 The ability to use a range of mathematical tools to calculate, manipulate, predict and represent physical systems and processes. 	NC/Spec coverage	NC/Spec coverage	NC/Spec coverage