

#### Key: \*Bold writing shows development or progression from previous year. \*<u>Underline</u> shows cross-over of key concepts with other end-points

| Faculty:            |        |                               | Sub                        | ject: Triple Physics |         |                               |
|---------------------|--------|-------------------------------|----------------------------|----------------------|---------|-------------------------------|
| Science             |        |                               |                            | ,,,,,,               |         |                               |
| End points          | Year 6 | Year 7                        | Year 8                     | Year 9               | Year 10 | Year 11                       |
|                     |        |                               |                            |                      |         |                               |
| Understanding of    |        | Forces as pushes or pulls     | A qualitative approach     |                      |         | Forces as pushes or pulls     |
| how all             |        | arising from the interaction  | Newton's second law –      |                      |         | arising from the interaction  |
| interactions in the |        | between 2 objects - contact   | applying a force change    |                      |         | between 2 objects – this      |
| Universe are        |        | and non-contact; forces       | the speed and/or direct    |                      |         | can be observed in both       |
| reliant on forces   |        | changing speed or direction   | of an object, whereas z    |                      |         | contact and non-contact       |
| being exchanged     |        | of objects.                   | net force means that no    | D                    |         | forces.                       |
| between two or      |        |                               | change in speed or         |                      |         |                               |
| more bodies, and    |        | Using force arrow diagrams    | direction is possible      |                      |         | When stretching and           |
| that these force    |        | to represent forces in 1      |                            |                      |         | squashing elastic and         |
| interactions are    |        | dimension.                    | Reversing Newton's sec     | cond                 |         | inelastic deformation can     |
| inextricable from   |        |                               | law to infer that if an    |                      |         | occur; Hooke's Law as a       |
| the corresponding   |        | The difference between        | object is changing spee    |                      |         | special case of this; force-  |
| energy and          |        | weight and mass, and how      | and/or direction then t    |                      |         | extension graphs for          |
| momentum            |        | to calculate the force due to | must be a net force act    | ing,                 |         | different materials and       |
| conservation        |        | a given mass in Earth's       | and vice versa.            |                      |         | using these to describe       |
| within systems.     |        | gravitational field.          |                            |                      |         | where materials are elastic   |
|                     |        |                               | Weight as the force obj    |                      |         | or inelastic, temporarily     |
|                     |        |                               | feel as a result of gravit |                      |         | deformed or permanently       |
|                     |        |                               | which is a field that diff |                      |         | deformed, and to calculate    |
|                     |        |                               | on different planets and   |                      |         | energy transfers as a result  |
|                     |        |                               | stars, and how to calcul   |                      |         | of stretching.                |
|                     |        |                               | the weight due to a give   | en                   |         |                               |
|                     |        |                               | mass in any given          |                      |         | Work done as the energy       |
|                     |        |                               | gravitational field.       |                      |         | change of a system; how to    |
|                     |        |                               |                            |                      |         | calculate work done using     |
|                     |        |                               | Forces as actions that ca  |                      |         | energy equations for          |
|                     |        |                               | squash or stretch object   |                      |         | common stores such as         |
|                     |        |                               | Hooke's Law as a specia    |                      |         | kinetic or gravitational      |
|                     |        |                               | case of stretching where   | e                    |         | potential, and relating work  |
|                     |        |                               | displacement is            |                      |         | done to energy transfers      |
|                     |        |                               | proportional to force      |                      |         | using the work done           |
|                     |        |                               | applied.                   |                      |         | equation.                     |
|                     |        |                               | Moments as the turning     | 2                    |         | Moments as the turning        |
|                     |        |                               | effect of a force; levers  |                      |         | effect of a force; levers as  |
|                     |        |                               | simple force multipliers   |                      |         | simple force multipliers that |
|                     |        |                               | can exert a larger force   |                      |         | can exert a larger force with |
|                     |        |                               | a smaller movement.        |                      |         | a smaller movement.           |
|                     |        |                               |                            |                      |         | Weight as the force objects   |
|                     |        |                               |                            |                      |         | feel as a result of gravity,  |
|                     |        |                               |                            |                      |         | icer as a result of gravity,  |

|  |       |                               |  | WESTON TAVELL ACADI           |
|--|-------|-------------------------------|--|-------------------------------|
|  | TI TI | he difference between         |  | which is a field that differs |
|  | w     | veight and mass, and how      |  | on different planets and      |
|  | to    | o calculate the force due     |  | stars, and how to calculate   |
|  | to    | o a given mass in Earth's     |  | the weight due to a given     |
|  | gr    | ravitational field.           |  | mass in any given             |
|  |       |                               |  | gravitational field.          |
|  | w     | Vork done is the energy       |  | -                             |
|  |       | hange of a system.            |  | Forces as vectors, with       |
|  |       | 0                             |  | magnitude and direction;      |
|  | D     | Describing the motion of      |  | using force vector diagrams   |
|  |       | bjects in the case where      |  | in 2 dimensions in order to   |
|  |       | orce is zero and therefore    |  | represent multiple forces     |
|  |       | peed does not change;         |  | and calculate resultant       |
|  |       | alculating average speed      |  | forces; the use of free body  |
|  |       | viven distance covered and    |  | •                             |
|  | _     |                               |  | diagrams in order to          |
|  | tir   | ime taken values.             |  | represent multiple forces     |
|  |       |                               |  | and calculate resultant       |
|  |       | Jse of distance-time graphs   |  | forces, using force vector    |
|  |       | o calculate speed, total      |  | diagrams in 2 dimensions      |
|  |       | listance covered and          |  | in order to resolve single    |
|  | av    | verage speed.                 |  | forces into their orthogonal  |
|  |       |                               |  | components – all via scale    |
|  |       | orce exerted over an area     |  | drawings.                     |
|  | re    | esults in pressure.           |  |                               |
|  |       | Pressure occurs in all fluids |  | Levers and gears as force     |
|  |       | lue to particle collisions;   |  | multipliers that can exert a  |
|  | at    | tmospheric pressure           |  | larger force with a smaller   |
|  | de    | lecreases with height,        |  | movement or vice versa.       |
|  | w     | vhereas pressure in liquids   |  | Describing and explaining     |
|  | in    | ncreases with depth.          |  | the factors that lead to      |
|  |       | -                             |  | changing forces acting on a   |
|  |       |                               |  | body in atmospheric free      |
|  |       |                               |  | fall, and how these lead to   |
|  |       |                               |  | changing speed up to a        |
|  |       |                               |  | maximum terminal velocity;    |
|  |       |                               |  | representing free-fall and    |
|  |       |                               |  | terminal velocity on a        |
|  |       |                               |  | graph; describing how free-   |
|  |       |                               |  | fall is altered by the        |
|  |       |                               |  | deployment of a parachute.    |
|  |       |                               |  | acployment of a parachate.    |
|  |       |                               |  | Distance and displacement,    |
|  |       |                               |  | • •                           |
|  |       |                               |  | speed and velocity as         |
|  |       |                               |  | scalars and vectors, and      |
|  |       |                               |  | using 2- dimensional vector   |
|  |       |                               |  | diagrams to perform           |

|   |  |  |  | calculations for resultant   |
|---|--|--|--|------------------------------|
|   |  |  |  | displacement or velocity via |
|   |  |  |  | scale drawings.              |
|   |  |  |  | scale urawings.              |
|   |  |  |  |                              |
|   |  |  |  | Distance-time,               |
|   |  |  |  | displacement - time, speed-  |
|   |  |  |  | time and velocity- time      |
|   |  |  |  |                              |
|   |  |  |  | graphs and their uses to     |
|   |  |  |  | describe motion –            |
|   |  |  |  | interpreting these and       |
|   |  |  |  | constructing these;          |
|   |  |  |  | acceleration calculations    |
|   |  |  |  |                              |
|   |  |  |  | using speed/velocity and     |
|   |  |  |  | time data or from            |
|   |  |  |  | speed/velocity-time graphs.  |
|   |  |  |  |                              |
|   |  |  |  | Describing how and           |
|   |  |  |  |                              |
|   |  |  |  | explaining why velocity      |
|   |  |  |  | changes during circular      |
|   |  |  |  | motion, and why              |
|   |  |  |  | subsequently we can          |
|   |  |  |  | describe the object as       |
|   |  |  |  |                              |
|   |  |  |  | accelerating.                |
|   |  |  |  |                              |
|   |  |  |  | Articulating Newton's 1st,   |
|   |  |  |  | 2nd, 3rd laws and            |
|   |  |  |  | identifying and describing   |
|   |  |  |  |                              |
|   |  |  |  | how they apply to and lead   |
|   |  |  |  | to real-world examples of    |
|   |  |  |  | motion/lack of motion.       |
|   |  |  |  | Inertial mass as the mass    |
|   |  |  |  | that resists acceleration,   |
|   |  |  |  |                              |
|   |  |  |  | and therefore leads to       |
|   |  |  |  | Newton's second law.         |
|   |  |  |  |                              |
|   |  |  |  | Momentum as the              |
|   |  |  |  | property of a moving         |
|   |  |  |  | object related to its        |
|   |  |  |  |                              |
|   |  |  |  | velocity and mass, and       |
|   |  |  |  | subjectively experienced as  |
|   |  |  |  | the difficulty of stopping   |
|   |  |  |  | the object in a given time   |
|   |  |  |  | with a given force;          |
|   |  |  |  |                              |
| L |  |  |  | momentum as a vector.        |

|                                                                                         |                  |                                                                                                                                            |                                                                                                                                                      |                  |                                                                                                                                          | 1-dimensional vector<br>addition of momentum<br>values.<br>Calculating stopping<br>distances of moving<br>vehicles by combining their<br>thinking distance (under<br>constant velocity) and<br>braking distance (under<br>constant acceleration);<br>relating stopping distances<br>to energy transfers through<br>the velocity squared<br>component of kinetic         |
|-----------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                         |                  |                                                                                                                                            |                                                                                                                                                      |                  |                                                                                                                                          | energy.<br>Satellites and how they<br>remain in orbit; describing<br>the acceleration and<br>circular motion of<br>satellites. (Triple)<br>Force exerted over an area<br>results in pressure.<br>Pressure occurs in all fluids<br>due to particle collisions;<br>atmospheric pressure<br>decreases with height,<br>whereas pressure in liquids<br>increases with depth. |
|                                                                                         |                  |                                                                                                                                            |                                                                                                                                                      |                  |                                                                                                                                          | Using volume and density<br>to perform displacement<br>calculations to find up-<br>thrust in different fluids.                                                                                                                                                                                                                                                          |
|                                                                                         | NC/Spec coverage | NC/Spec coverage<br>Gravity                                                                                                                | NC/Spec coverage<br>Contact forces<br>Pressure                                                                                                       | NC/Spec coverage | NC/Spec coverage                                                                                                                         | NC/Spec coverage<br>Forces in action<br>Motion<br>Force and motion<br>Force and pressure                                                                                                                                                                                                                                                                                |
| Understanding of<br>how all matter is<br>made up of tiny<br>particles,<br>significantly |                  | The particle model – all<br>matter is made up from<br>atoms, and these atoms can<br>be arranged as molecules,<br>compounds or in mixtures. | The Earth's orbit around the<br>Sun and its effects – the day<br>solar cycle, monthly lunar<br>cycle, yearly seasonal<br>cycles; the seasons and the |                  | Molecules and compounds<br>as having electrostatic<br>forces binding them, which<br>need to be overcome in<br>order to break them apart. |                                                                                                                                                                                                                                                                                                                                                                         |

|                     | <br>                         |                                |                             | WESTON FAVELL ACADI |
|---------------------|------------------------------|--------------------------------|-----------------------------|---------------------|
| smaller than the    |                              | Earth's tilt, day length at    | Density as the mass per     |                     |
| cells studied in    | Molecules and compounds      | different times of year, in    | volume of a substance;      |                     |
| biology. The        | as having electrostatic      | different hemispheres.         | different methods of        |                     |
| particles are       | forces binding them, which   |                                | calculating density         |                     |
| always moving,      | need to be overcome in       | The Moon's orbit around        | experimentally, for regular |                     |
| have spaces         | order to break them apart.   | the Earth and its effects –    | solids, irregular solid and |                     |
| between them,       |                              | <u>the tides.</u>              | fluids                      |                     |
| and adding heat to  | States of matter and         |                                |                             |                     |
| them makes them     | changes of state between     | Gravity force, weight = mass   | States of matter and        |                     |
| move faster. How    | solid, liquid and gas, and   | x gravitational field strength | changes of state between    |                     |
| the particles are   | describing the changes that  | (g), on Earth g=10 N/kg,       | solid, liquid and gas, and  |                     |
| arranged and        | take place to the substances | different                      | describing the changes that |                     |
| move dictates the   | on a macro-level between     |                                | take place to the           |                     |
| state and           | these states of matter.      | A qualitative approach to      | substances on a macro-      |                     |
| properties of the   |                              | internal energy to begin to    | level between these states  |                     |
| macroscopic         | States of matter and         | discuss the difference         | of matter.                  |                     |
| substances we       | changes of state between     | between temperature and        |                             |                     |
| interact with every | solid, liquid and gas, and   | <u>energy – temperature as</u> | States of matter and        |                     |
| day.                | describing the changes that  | how hot an object feels,       | changes of state between    |                     |
|                     | take place to the substances | but energy as the total        | solid, liquid and gas, and  |                     |
|                     | on a particle model- level   | amount of energy stored in     | describing the changes that |                     |
|                     | between these states of      | <u>it.</u>                     | take place to the           |                     |
|                     | matter, in terms of particle |                                | substances on a particle    |                     |
|                     | energy, particle movement,   | Energy flows as heat           | model- level between        |                     |
|                     | position, binding forces.    | energy from high               | these states of matter, in  |                     |
|                     |                              | temperature systems to         | terms of particle energy,   |                     |
|                     | Physical changes as changes  | low temperature systems.       | particle movement,          |                     |
|                     | of state; chemical changes   |                                | position, binding forces.   |                     |
|                     | as changes of chemical       | Heating and thermal            |                             |                     |
|                     | property when more than      | equilibrium, through the       | Physical changes as changes |                     |
|                     | one atom is chemically       | processes of conduction        | of state; chemical changes  |                     |
|                     | bonded together.             | (contact heating in solids),   | as changes of chemical      |                     |
|                     | Conservation of mass in      | convection (circular flow      | property when more than     |                     |
|                     | both physical and chemical   | heating in fluids) and         | one atom is chemically      |                     |
|                     | changes.                     | radiation (electromagnetic     | bonded together             |                     |
|                     |                              | heat energy given off by all   |                             |                     |
|                     | Compounds formed by          | objects and passing            | Conservation of mass in     |                     |
|                     | chemical changes having      | <u>through a vacuum).</u>      | both physical and chemical  |                     |
|                     | different properties to the  |                                | changes.                    |                     |
|                     | atoms that comprise them.    | Brownian motion in fluids,     |                             |                     |
|                     |                              | with particles exhibiting      | Compounds formed by         |                     |
|                     |                              | random motion due to their     | chemical changes having     |                     |
|                     |                              | energies.                      | different properties to the |                     |
|                     |                              |                                | atoms that comprise them.   |                     |
|                     |                              | Diffusion in fluids from       |                             |                     |
|                     |                              | areas of high concentration    |                             |                     |

|                             |                              | WESTON INVELENCE |
|-----------------------------|------------------------------|------------------|
| to areas of low             | Diffusion in fluids from     |                  |
| concentration down a        | areas of high concentration  |                  |
| concentration gradient.     | to areas of low              |                  |
|                             | concentration down a         |                  |
| Compounds formed by         | concentration gradient;      |                  |
| chemical changes having     | osmosis as a special case.   |                  |
| different properties to the |                              |                  |
| atoms that comprise them.   |                              |                  |
| atoms that comprise them.   |                              |                  |
|                             | Internal energy as the sum   |                  |
|                             | of kinetic and potential     |                  |
|                             | energies of particles in a   |                  |
|                             | substance; the temperature   |                  |
|                             | of a substance related to    |                  |
|                             | the average kinetic energy   |                  |
|                             | per particle in the          |                  |
|                             | substance; potential energy  |                  |
|                             | reflecting the bound state   |                  |
|                             | of matter of a substance.    |                  |
|                             | of matter of a substance.    |                  |
|                             | Potential energy as a        |                  |
|                             |                              |                  |
|                             | negative quantity that       |                  |
|                             | needs to be overcome in      |                  |
|                             | order to separate particles. |                  |
|                             |                              |                  |
|                             | Heating and thermal          |                  |
|                             | equilibrium, through the     |                  |
|                             | processes of conduction      |                  |
|                             | (contact heating in solids), |                  |
|                             | convection (circular flow    |                  |
|                             | heating in fluids) and       |                  |
|                             | radiation (electromagnetic   |                  |
|                             |                              |                  |
|                             | heat energy given off by all |                  |
|                             | objects and passing          |                  |
|                             | through a vacuum), relative  |                  |
|                             | to increasing or decreasing  |                  |
|                             | internal energy.             |                  |
|                             |                              |                  |
|                             | Heating and changing         |                  |
|                             | temperature and changing     |                  |
|                             | state – specific heat        |                  |
|                             | capacity as the              |                  |
|                             | consideration when           |                  |
|                             | increasing temperature and   |                  |
|                             | therefore increasing kinetic |                  |
|                             |                              |                  |
|                             | energy of particles both not |                  |
|                             | potential energy, and        |                  |

|                     |                  |                          |                     |                        | specific latent heat as the   |                           |
|---------------------|------------------|--------------------------|---------------------|------------------------|-------------------------------|---------------------------|
|                     |                  |                          |                     |                        | consideration when            |                           |
|                     |                  |                          |                     |                        | changing state and            |                           |
|                     |                  |                          |                     |                        | therefore changing            |                           |
|                     |                  |                          |                     |                        | potential energy of particles |                           |
|                     |                  |                          |                     |                        | both not kinetic energy and   |                           |
|                     |                  |                          |                     |                        | therefore not temperature.    |                           |
|                     |                  |                          |                     |                        |                               |                           |
|                     |                  |                          |                     |                        | Brownian motion in fluids,    |                           |
|                     |                  |                          |                     |                        | with particles exhibiting     |                           |
|                     |                  |                          |                     |                        | random motion due to their    |                           |
|                     |                  |                          |                     |                        | energies, even in a           |                           |
|                     |                  |                          |                     |                        | substance ostensibly at rest. |                           |
|                     |                  |                          |                     |                        |                               |                           |
|                     |                  |                          |                     |                        | Pressure occurs in all fluids |                           |
|                     |                  |                          |                     |                        | due to particle collisions    |                           |
|                     |                  |                          |                     |                        | with the walls of a           |                           |
|                     |                  |                          |                     |                        | container and the             |                           |
|                     |                  |                          |                     |                        | subsequent momentum           |                           |
|                     |                  |                          |                     |                        | change and exertion of a      |                           |
|                     |                  |                          |                     |                        | force; atmospheric pressure   |                           |
|                     |                  |                          |                     |                        | decreases with height,        |                           |
|                     |                  |                          |                     |                        | whereas pressure in liquids   |                           |
|                     |                  |                          |                     |                        | increases with depth          |                           |
|                     |                  |                          |                     |                        | increases with depth          |                           |
|                     |                  |                          |                     |                        | Explaining the causes of gas  |                           |
|                     |                  |                          |                     |                        | pressure from a particle      |                           |
|                     |                  |                          |                     |                        | model perspective, taking     |                           |
|                     |                  |                          |                     |                        | into account the positions,   |                           |
|                     |                  |                          |                     |                        | kinetic energy, speed and     |                           |
|                     |                  |                          |                     |                        | spacing of particles; linking |                           |
|                     |                  |                          |                     |                        | this to work done on the      |                           |
|                     |                  |                          |                     |                        | substance as the internal     |                           |
|                     |                  |                          |                     |                        | energy of a fluid is          |                           |
|                     |                  |                          |                     |                        | increased and how this        |                           |
|                     |                  |                          |                     |                        |                               |                           |
|                     |                  |                          |                     |                        | results in volume or          |                           |
|                     |                  |                          |                     |                        | pressure changes              |                           |
|                     | NC/Spec coverage | NC/Spec coverage         | NC/Spec coverage    | NC/Spec coverage       | NC/Spec coverage              | NC/Spec coverage          |
|                     |                  | Links to chemistry – the | Links to:           |                        | Molecules and matter          |                           |
|                     |                  | particle model           | - Chemistry - the   |                        | Links to:                     |                           |
|                     |                  |                          | particle model      |                        | Conserving and dissipating    |                           |
|                     |                  |                          | - Contact forces    |                        | Energy transfer by heating    |                           |
|                     |                  |                          | Pressure            |                        |                               |                           |
|                     |                  |                          | Heating and cooling |                        |                               |                           |
| Understanding       |                  | The particle model – all |                     | Models of the atom and | Atomic structure of atoms,    | Radioactive decay through |
| that the atoms that |                  | matter is made up from   |                     | how these have changed | with positive protons and     | both spontaneous and      |

|                     |                            |                                |                               | WESTON FAVELL ACAD           |
|---------------------|----------------------------|--------------------------------|-------------------------------|------------------------------|
| contribute to       | atoms, and these atoms can | over time, from Dalton's       | neutral neutrons forming a    | induced nuclear fission –    |
| particle theory are | be arranged as molecules,  | billiard ball model to JJ      | nucleus, orbited by           | the breakdown of a large     |
| themselves          | compounds or in mixtures.  | Thomson's plum pudding         | negatively charged            | unstable nucleus into two    |
| composed of even    | Molecules and compounds    | model, to Rutherford's         | electrons in energy levels    | new smaller, more stable     |
| smaller particles.  | as having electrostatic    | nuclear model, to Bohr's       | at different distances        | nuclei with the emission of  |
| The compositions    | forces binding them, which | energy level model.            | defining property of a given  | two or three neutrons and    |
| and arrangements    | need to be overcome in     | reach given mass using half-   | element.                      | the release of energy in the |
| of these smaller    | order to break them apart. | life.                          |                               | form of electromagnetic      |
| particles dictates  |                            |                                | Using element symbols to      | radiation.                   |
| the chemical        |                            | The three types of ionising    | define the numbers of each    |                              |
| properties of       |                            | radiation – alpha, beta,       | type of particle in a neutral | Chain reactions in nuclear   |
| substances, and     |                            | gamma                          | Atom                          | fissions and showing these   |
| changing these can  |                            | their constituent parts, their |                               | in a flow diagram format.    |
| lead to drastic and |                            | mass, their charge, their      | Neutral atoms having equal    |                              |
| unexpected energy   |                            | ionising properties and their  | numbers of protons and        | Using symbol equations to    |
| changes.            |                            | penetrative properties.        | electrons, ions having        | show the process of          |
|                     |                            |                                | differing numbers of          | spontaneous or induced       |
|                     |                            | The uses of ionising           | electrons; using element      | fission.                     |
|                     |                            | radiation in consumer          | symbols to represent ions.    |                              |
|                     |                            | products and industry, and     |                               | The uses of fission in       |
|                     |                            | the links between the          | Neutron number of atoms       | nuclear fission power        |
|                     |                            | properties of the three        | may change without            | stations – their             |
|                     |                            | types and their uses.          | changing the element          | construction, how            |
|                     |                            |                                | represented; referring to     | electricity in generated     |
|                     |                            | The detection of ionising      | atoms with differing          | inside them, how they are    |
|                     |                            | radiation using GM tubes.      | numbers of neutrons as        | designed with safety         |
|                     |                            | Contamination vs               | isotopes.                     | features to prevent chain    |
|                     |                            | irradiation and the            |                               | reactions and nuclear        |
|                     |                            | difference in the uses of      |                               | meltdowns.                   |
|                     |                            | irradiation as compared to     |                               |                              |
|                     |                            | the hazards of                 |                               | Nuclear fusion, where two    |
|                     |                            | contamination.                 |                               | smaller unstable nuclei are  |
|                     |                            |                                |                               | fused at high temperatures   |
|                     |                            | Hazards of radioactive         |                               | and pressures to form a      |
|                     |                            | emissions in industry and      |                               | new larger more stable       |
|                     |                            | medicine and how to            |                               | nucleus, with the release of |
|                     |                            | reduce risk to a safe level;   |                               | energy in the form of        |
|                     |                            | background radiation           |                               | electromagnetic radiation    |
|                     |                            | sources and their              |                               | and the emission of a        |
|                     |                            | significance; how to safely    |                               | neutron.                     |
|                     |                            | dispose of radioactive         |                               |                              |
|                     |                            | waste                          |                               | Explaining why chain         |
|                     |                            |                                |                               | reactions cannot occur in    |
|                     |                            | Radioactive decay through      |                               | nuclear fusion.              |
|                     |                            | both spontaneous and           |                               |                              |
|                     |                            | induced nuclear fission –      |                               |                              |

|   | <br> |   |                               | WESTON FAVELL ACAD                     |
|---|------|---|-------------------------------|----------------------------------------|
|   |      |   | the breakdown of a large      | Describing how nuclear                 |
|   |      |   | unstable nucleus into two     | fusion occurs in stars but             |
|   |      |   | new smaller, more stable      | cannot be reproduced at                |
|   |      |   | nuclei with the emission of   | scale on Earth due to the              |
|   |      |   | two or three neutrons and     | high pressures and                     |
|   |      |   | the release of energy in the  | temperatures required.                 |
|   |      |   | form of electromagnetic       | ··· [································· |
|   |      |   | radiation.                    | The life cycle of the solar            |
|   |      |   |                               | system. (Triple)                       |
|   |      |   | Chain reactions in nuclear    | <u></u>                                |
|   |      |   | fissions and showing these    | The life cycle of stars, from          |
|   |      |   | in a flow diagram format      | clouds of dust and gas to              |
|   |      |   |                               | nebula / white, dwarves                |
|   |      |   | Using symbol equations to     | /neutron stars/black                   |
|   |      |   | show the process of           | holes depending on their               |
|   |      |   | spontaneous or induced        | initial mass. (Triple)                 |
|   |      |   | fission.                      |                                        |
|   |      |   | lission.                      |                                        |
|   |      |   | The surge of firsten in       |                                        |
|   |      |   | The uses of fission in        |                                        |
|   |      |   | nuclear fission power         |                                        |
|   |      |   | stations – their              |                                        |
|   |      |   | construction, how             |                                        |
|   |      |   | electricity in generated      |                                        |
|   |      |   | inside them, how they are     |                                        |
|   |      |   | designed with safety          |                                        |
|   |      |   | features to prevent chain     |                                        |
|   |      |   | reactions and nuclear         |                                        |
|   |      |   | <u>meltdowns.</u>             |                                        |
|   |      |   |                               |                                        |
|   |      |   | Atomic structure of atoms,    |                                        |
|   |      |   | with positive protons and     |                                        |
|   |      |   | neutral neutrons forming a    |                                        |
|   |      |   | nucleus, orbited by           |                                        |
|   |      |   | negatively charged            |                                        |
|   |      |   | electrons in energy levels at |                                        |
|   |      |   | different distances           |                                        |
|   |      |   | defining property of a given  |                                        |
|   |      |   | element.                      |                                        |
|   |      |   |                               |                                        |
|   |      |   | Using element symbols to      |                                        |
|   |      |   | define the numbers of each    |                                        |
|   |      |   | type of particle in a neutral |                                        |
|   |      |   | Atom                          |                                        |
|   |      |   |                               |                                        |
|   |      |   | Neutral atoms having equal    |                                        |
|   |      |   | numbers of protons and        |                                        |
| L | 1    | 1 |                               |                                        |

|  |  |                            | WESTON TAVELL ACADEM |
|--|--|----------------------------|----------------------|
|  |  | electrons, ions having     |                      |
|  |  | differing numbers of       |                      |
|  |  | electrons; using element   |                      |
|  |  | symbols to represent ions. |                      |
|  |  |                            |                      |
|  |  | Neutron number of atoms    |                      |
|  |  | may change without         |                      |
|  |  | changing the element       |                      |
|  |  | represented; referring to  |                      |
|  |  | atoms with differing       |                      |
|  |  |                            |                      |
|  |  | numbers of neutrons as     |                      |
|  |  | isotopes.                  |                      |
|  |  |                            |                      |
|  |  | Models of the atom and     |                      |
|  |  | how these have changed     |                      |
|  |  | over time, from Dalton's   |                      |
|  |  | billiard ball model to JJ  |                      |
|  |  | Thomson's plum pudding     |                      |
|  |  | model, to Rutherford's     |                      |
|  |  | nuclear model, to Bohr's   |                      |
|  |  | energy level model.        |                      |
|  |  |                            |                      |
|  |  | Reach given mass using     |                      |
|  |  | half-life                  |                      |
|  |  |                            |                      |
|  |  | The three types of ioning  |                      |
|  |  | radiation – alpha, beta,   |                      |
|  |  | gamma their constituent    |                      |
|  |  | parts, their mass, their   |                      |
|  |  |                            |                      |
|  |  | charge, their ionising     |                      |
|  |  | properties and their       |                      |
|  |  | penetrative properties.    |                      |
|  |  |                            |                      |
|  |  | The uses of ionising       |                      |
|  |  | radiation in consumer      |                      |
|  |  | products and industry, and |                      |
|  |  | the links between the      |                      |
|  |  | properties of the three    |                      |
|  |  | types and their uses.      |                      |
|  |  |                            |                      |
|  |  | The detection of ionising  |                      |
|  |  | radiation using GM tubes.  |                      |
|  |  |                            |                      |
|  |  | Contamination vs           |                      |
|  |  | irradiation and the        |                      |
|  |  | difference in the uses of  |                      |
|  |  |                            |                      |

|  |  |                               |  | WESTON FAVELL ACADEM |
|--|--|-------------------------------|--|----------------------|
|  |  | irradiation as compared to    |  |                      |
|  |  | the hazards of                |  |                      |
|  |  | contamination.                |  |                      |
|  |  |                               |  |                      |
|  |  | Hazards of radioactive        |  |                      |
|  |  | emissions in industry and     |  |                      |
|  |  | medicine and how to           |  |                      |
|  |  | reduce risk to a safe level;  |  |                      |
|  |  | background radiation          |  |                      |
|  |  | sources and their             |  |                      |
|  |  | significance; how to safely   |  |                      |
|  |  | dispose of radioactive        |  |                      |
|  |  | waste.                        |  |                      |
|  |  |                               |  |                      |
|  |  | Radioactive decay through     |  |                      |
|  |  | both spontaneous and          |  |                      |
|  |  | induced nuclear fission –     |  |                      |
|  |  | the breakdown of a large      |  |                      |
|  |  | unstable nucleus into two     |  |                      |
|  |  | new smaller, more stable      |  |                      |
|  |  | nuclei with the emission of   |  |                      |
|  |  | two or three neutrons and     |  |                      |
|  |  | the release of energy in the  |  |                      |
|  |  | form of electromagnetic       |  |                      |
|  |  | radiation.                    |  |                      |
|  |  |                               |  |                      |
|  |  | Chain reactions in muchaer    |  |                      |
|  |  | Chain reactions in nuclear    |  |                      |
|  |  | fissions and showing these    |  |                      |
|  |  | in a flow diagram format      |  |                      |
|  |  |                               |  |                      |
|  |  | Using symbol equations to     |  |                      |
|  |  | show the process of           |  |                      |
|  |  | spontaneous or induced        |  |                      |
|  |  | fission.                      |  |                      |
|  |  |                               |  |                      |
|  |  | The uses of fission in        |  |                      |
|  |  | nuclear fission power         |  |                      |
|  |  | stations, their construction, |  |                      |
|  |  | how electricity in generated  |  |                      |
|  |  | inside them, how they are     |  |                      |
|  |  | designed with safety          |  |                      |
|  |  | features to prevent chain     |  |                      |
|  |  | reactions and nuclear         |  |                      |
|  |  | meltdowns                     |  |                      |
|  |  |                               |  |                      |
|  |  |                               |  |                      |



|                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nuclear fusion, where two<br>smaller unstable nuclei are<br>fused at high temperatures<br>and pressures to form a<br>new larger more stable<br>nucleus, with the release of<br>energy in the form of<br>electromagnetic radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                              | NC/Spec coverage | NC/Spec coverage<br>Links to chemistry – the<br>particle model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC/Spec coverage<br>Links to chemistry – the<br>particle model and types of<br>reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NC/Spec coverage<br>Radioactivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC/Spec coverage<br>Links to chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC/Spec coverage<br>Space |
| Understanding<br>that all particles<br>carry an abstract<br>quantity labelled<br>as energy that can<br>be stored in<br>different stores,<br>which can be<br>transferred<br>between stores or<br>between systems<br>but is always<br>conserved. In some<br>forms energy<br>cannot be<br>observed and has<br>the potential to do<br>work; in others it<br>causes movement<br>of particles or<br>whole systems. |                  | Energy as a property of<br>systems that allows them to<br>'do things' or to 'make<br>things move', and that can<br>be found in different stores<br>within a system.<br>Energy transfers can take<br>place between different<br>stores in a system, but the<br>energy within a closed<br>system is constant – energy<br>is conserved.<br>Waves transfer energy with<br>no net transfer of matter.<br>Some energy stores are<br>visible and 'make things<br>happen', and some are<br>invisible, and have the<br>potential to make things<br>happen, which are called<br>potential stores.<br>Simple calculations can be<br>carried out to calculate the<br>magnitude of the energy in<br>different stores.<br>Energy is stored in food and<br>fuels, and we can calculate<br>the energy stored in | Power is the rate of transfer<br>of energy to or from a<br>system.<br>Power can be calculated<br>using the power equation.<br>Some energy waves can<br>pass through matter –<br>longitudinal waves – whilst<br>others can pass through<br>matter or a vacuum –<br>transverse waves. All waves<br>are uncharged.<br>Different fuels come from<br>different energy resources,<br>and these have different<br>energy density levels,<br>different advantages and<br>disadvantages to acquiring<br>them, and different<br>advantages and<br>disadvantages to using<br>them as fuels to create<br>heat energy or electricity.<br>The acquisition of<br>energy resources and their<br>use has a range of<br>environmental, social and<br>economic impacts. | Energy as a property of<br>systems that allows them<br>to 'do things' or to 'make<br>things move', and that can<br>be found in different stores<br>within a system.<br>Energy transfers can take<br>place between different<br>stores in a system, but the<br>energy within a closed<br>system is constant – energy<br>is conserved.<br>Some energy stores are<br>visible and 'make things<br>happen', and some are<br>invisible, and have the<br>potential to make things<br>happen, which are called<br>potential stores.<br>Energy that is not usefully<br>transferred is dissipated<br>into the surroundings as<br>heat.<br>Kinetic energy,<br>gravitational potential<br>energy and elastic potential<br>energy can be calculated, | Potential energy as a<br>negative quantity that<br>needs to be overcome by<br>doing work on a system.<br>Efficiency is the percentage<br>of energy that is put into<br>a system that results in<br>increasing useful or desired<br>energy stores.<br>Energy that is not usefully<br>transferred is dissipated<br>into the surroundings as<br>heat.<br>Internal energy as the sum<br>of kinetic and potential<br>energies of particles in a<br>substance; the<br>temperature of a substance<br>related to the average<br>kinetic energy per particle<br>in the substance; potential<br>energy reflecting the<br>bound state of matter of a<br>substance.<br>Heating and thermal<br>equilibrium, through the<br>processes of conduction |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                              |                  | different substances<br>experimentally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and properties or results<br>about an object or system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (contact heating in solids),<br>convection (circular flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |

|  |  |                             |                               |                               | WESTON TAVELL ACAD |
|--|--|-----------------------------|-------------------------------|-------------------------------|--------------------|
|  |  | Different fuels come from   | can be found by combining     | heating in fluids) and        |                    |
|  |  | different energy resources, | these calculations with the   | radiation (electromagnetic    |                    |
|  |  | and these have different    | principle of conservation of  | heat energy given off by all  |                    |
|  |  | energy density levels,      | energy.                       | objects and passing through   |                    |
|  |  | different advantages and    |                               | a vacuum), relative to        |                    |
|  |  | disadvantages to acquiring  | Power is the rate of transfer | increasing or decreasing      |                    |
|  |  | them, and different         | of energy to or from a        | internal energy.              |                    |
|  |  | advantages and              | system.                       |                               |                    |
|  |  | disadvantages to            | •                             | Heating and changing          |                    |
|  |  | C C                         | Power can be calculated       | temperature and changing      |                    |
|  |  |                             | using the power equation      | state – specific heat         |                    |
|  |  |                             | P=W/t                         | capacity as the               |                    |
|  |  |                             |                               | consideration when            |                    |
|  |  |                             | Work done as the energy       | increasing temperature and    |                    |
|  |  |                             | change of a system; how to    | therefore increasing kinetic  |                    |
|  |  |                             | calculate work done using     | energy of particles both not  |                    |
|  |  |                             | energy equations for          | potential energy, and         |                    |
|  |  |                             | common stores such as         | specific latent heat as the   |                    |
|  |  |                             |                               |                               |                    |
|  |  |                             | kinetic or gravitational      | consideration when            |                    |
|  |  |                             | potential, and relating       | changing state and            |                    |
|  |  |                             | energy transfers to force     | therefore changing            |                    |
|  |  |                             | and time using the work       | potential energy of particles |                    |
|  |  |                             | done equation W = F*d         | both not kinetic energy and   |                    |
|  |  |                             |                               | therefore not temperature.    |                    |
|  |  |                             | Potential energy as a         |                               |                    |
|  |  |                             | negative quantity that        |                               |                    |
|  |  |                             | needs to be overcome by       |                               |                    |
|  |  |                             | doing work on a system.       |                               |                    |
|  |  |                             |                               |                               |                    |
|  |  |                             | Efficiency is the percentage  |                               |                    |
|  |  |                             | of energy that is put into a  |                               |                    |
|  |  |                             | system that results in        |                               |                    |
|  |  |                             | increasing useful or desired  |                               |                    |
|  |  |                             | energy stores.                |                               |                    |
|  |  |                             |                               |                               |                    |
|  |  |                             | Energy that is not usefully   |                               |                    |
|  |  |                             | transferred is dissipated     |                               |                    |
|  |  |                             | into the surroundings as      |                               |                    |
|  |  |                             | heat.                         |                               |                    |
|  |  |                             |                               |                               |                    |
|  |  |                             | Internal energy as the sum    |                               |                    |
|  |  |                             | of kinetic and potential      |                               |                    |
|  |  |                             | energies of particles in a    |                               |                    |
|  |  |                             | substance; the temperature    |                               |                    |
|  |  |                             | of a substance related to     |                               |                    |
|  |  |                             | the average kinetic energy    |                               |                    |
|  |  |                             | the average killetic ellergy  |                               |                    |

|  |  |                              | WESTON INVELL MCADE |
|--|--|------------------------------|---------------------|
|  |  | per particle in the          |                     |
|  |  | substance; potential energy  |                     |
|  |  | reflecting the bound state   |                     |
|  |  | of matter of a substance.    |                     |
|  |  |                              |                     |
|  |  | Heating and thermal          |                     |
|  |  | equilibrium, through the     |                     |
|  |  | processes of conduction      |                     |
|  |  |                              |                     |
|  |  | (contact heating in solids), |                     |
|  |  | convection (circular flow    |                     |
|  |  | heating in fluids) and       |                     |
|  |  | radiation (electromagnetic   |                     |
|  |  | heat energy given off by all |                     |
|  |  | objects and passing through  |                     |
|  |  | a vacuum), relative to       |                     |
|  |  | increasing or decreasing     |                     |
|  |  | internal energy.             |                     |
|  |  |                              |                     |
|  |  | Heating and changing         |                     |
|  |  | temperature and changing     |                     |
|  |  | state – specific heat        |                     |
|  |  | capacity as the              |                     |
|  |  | consideration when           |                     |
|  |  | increasing temperature and   |                     |
|  |  | therefore increasing kinetic |                     |
|  |  | energy of particles both not |                     |
|  |  |                              |                     |
|  |  | potential energy, and        |                     |
|  |  | specific latent heat as the  |                     |
|  |  | consideration when           |                     |
|  |  | changing state and           |                     |
|  |  | therefore changing           |                     |
|  |  | potential energy of          |                     |
|  |  | particles both not kinetic   |                     |
|  |  | energy and therefore not     |                     |
|  |  | temperature.                 |                     |
|  |  |                              |                     |
|  |  | Using them as fuels to       |                     |
|  |  | create heat energy or        |                     |
|  |  | electricity. The acquisition |                     |
|  |  | of energy resources and      |                     |
|  |  | their use has a range of     |                     |
|  |  | environmental, social and    |                     |
|  |  | economic impacts.            |                     |
|  |  |                              |                     |
|  |  | Describing the processes of  |                     |
|  |  | Describing the processes of  |                     |
|  |  | generating electricity via   |                     |



|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hydroelectric, wave, tidal,<br>geothermal, solar, wind,<br>fossil fuel and nuclear<br>power stations, giving the<br>advantages and<br>disadvantages of each form<br>of electricity generation. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                   | NC/Spec coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NC/Spec coverage<br>Food and fuels<br>Energy resources<br>Energy and power<br>Energy adds up<br>Energy dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NC/Spec coverage<br>Links to chemistry<br>Heating and cooling<br>Aspects of pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NC/Spec coverage<br>Conserving and dissipating<br>Energy transfer by heating<br>Energy resources                                                                                               | NC/Spec coverage<br>Links to Particles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC/Spec coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Understanding<br>that energy can be<br>transferred<br>through media in<br>the form of waves,<br>with no net<br>transfer of matter.<br>Waves can interact<br>with matter and<br>with one another<br>in a multitude of<br>ways with<br>predictable, if<br>unintuitive,<br>outcomes. | Recognise that light appears<br>to travel in straight lines<br>Use the idea that light<br>travels in straight lines to<br>explain that objects are<br>seen because they give out<br>or reflect light into the eye<br>Explain that we see things<br>because light travels from<br>light sources to our eyes or<br>from light sources to<br>objects and then to our<br>eyes<br>Use the idea that light<br>travels in straight lines to<br>explain why shadows have<br>the same shape as the<br>objects that cast them. | Waves transfer energy with<br>no net transfer of matter.<br>Transverse oscillate<br>perpendicular to the<br>direction of energy transfer<br>whilst longitudinal waves<br>oscillate parallel to the<br>direction of energy transfer.<br>Examples of transverse<br>waves include light, radio<br>waves and seismic S-waves.<br>Examples of transverse<br>waves include sound and<br>seismic P-waves.<br>Use of the wave equation to<br>find the wave speed,<br>frequency, time period of<br>wavelength of a wave.<br>Like all waves, sound waves<br>can undergo reflection,<br>transmission or absorption.<br>Reflected sound waves are<br>called echoes.<br>Waves can be detected in a | Some energy waves can<br>pass through matter –<br>longitudinal waves – whilst<br>others can pass through<br>matter or a vacuum –<br>transverse waves. All<br>waves are uncharged.<br>Like all waves, light waves<br>can undergo reflection,<br>transmission or absorption.<br>Reflection of light waves<br>can be specular (regular) or<br>diffuse (irregular),<br>depending on whether<br>reflection occurs from a<br>plane surface or a bumpy<br>one.<br>Refraction and diffraction<br>are both effects that can be<br>observed when waves are<br>transmitted. Refraction<br>occurs when light changes<br>direction due to a change in<br>speed when passing<br>through a transparent<br>material with a differing<br>optical density, and<br>diffraction occurs when |                                                                                                                                                                                                | Reflection of light waves<br>can be specular (regular) or<br>diffuse (irregular),<br>depending on whether<br>reflection occurs from a<br>plane surface or a bumpy<br>one.<br>Refraction and diffraction<br>are both effects that can be<br>observed when waves are<br>transmitted. Refraction<br>occurs when light changes<br>direction due to a change<br>in speed when passing<br>through a transparent<br>material with a differing<br>optical density, and<br>diffraction occurs when<br>waves pass through a small<br>gap, comparable to or<br>smaller than the<br>wavelength of the wave,<br>and as a result spreads out.<br>Waves can be detected in a<br>variety of ways – we can<br>use microphones or our<br>ears to detect sound waves,<br>and both: | All objects at any<br>temperature above 0 K<br>emit infrared radiation.<br>An object that absorbs<br>all radiation falling on it, at<br>all wavelengths, is called a<br>black body. When a black<br>body is at a uniform<br>temperature, its emission<br>has a characteristic<br>frequency distribution that<br>depends on the<br>temperature. Its emission<br>is called black-body<br>radiation.<br>Red shift and Cosmic<br>Microwave Background<br>Radiation as evidence for<br>the Big Bang. (Triple)<br>Red shift is the shift in<br>expected wavelength of<br>light from distant celestial<br>objects towards to the<br>lower energy part of the<br>electromagnetic spectrum,<br>indicating that their sources<br>are retreating from the<br>observer. Since this is |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | variety of ways – we can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | waves pass through a small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | observed in all directions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                               |                               |                                        | WESTON FAVELL ACADE           |
|-------------------------------|-------------------------------|----------------------------------------|-------------------------------|
| use microphones or our        | gap, comparable to or         | <ul> <li>convert the energy</li> </ul> | from Earth this suggests      |
| ears to detect sound waves,   | smaller than the              | vibrations into an                     | that the fabric of the        |
| and both of these cases       | wavelength of the wave,       | electrical signal.                     | Universe itself is expanding. |
| convert the energy            | and as a result spreads out.  | can be displayed in                    | (Triple)                      |
| vibrations into an electrical |                               | transverse form on an                  |                               |
| signal.                       | Ray diagrams can be used      | oscilloscope – whether                 | The further an object is, the |
|                               | to chart the progress of      | they are transverse or                 | greater the shift and thus    |
| Some energy waves can         | waveswhen they are            | longitudinal – and by                  | the great the rate of         |
| pass through matter –         | reflected, refracted or       | interpreting the settings of           | recession (Triple)            |
| longitudinal waves – whilst   | diffracted.                   | the device properties such             |                               |
| others can pass through       |                               | as the wavelength,                     |                               |
| matter or a vacuum –          | Coloured light interacts in a | amplitude, frequency and               |                               |
| transverse waves. All waves   | way that is unintuitive –     | time period can be                     |                               |
| are uncharged.                | white light is composed of    | calculated.                            |                               |
|                               | a spectrum of all of the      |                                        |                               |
| Like all waves, light waves   | colours of the rainbow, and   | Electromagnetic radiation is           |                               |
| can undergo reflection,       | prisms can be used to         | a form of uncharged                    |                               |
| transmission or absorption.   | separate out these colours    | transverse wave that travels           |                               |
|                               | from white light through      | at the speed of light in a             |                               |
| Reflection of light waves     | refraction. There are         | vacuum, regardless of                  |                               |
| can be specular (regular) or  | differential colour effects   | frequency, and that exhibits           |                               |
| diffuse (irregular),          | in absorption and diffuse     | a range of different                   |                               |
| depending on whether          | reflection.                   | properties depending on                |                               |
| reflection occurs from a      |                               | the frequency or                       |                               |
| plane surface or a bumpy      |                               | wavelength of the waves.               |                               |
| one.                          |                               | wavelength of the waves.               |                               |
|                               |                               | As with any wave, the                  |                               |
| Refraction and diffraction    |                               | shorter the wavelength of              |                               |
| are both effects that can be  |                               | EM radiation the higher the            |                               |
| observed when waves are       |                               | frequency, and this causes             |                               |
| transmitted. Refraction       |                               | the waves to carry a                   |                               |
| occurs when light changes     |                               | greater amount of energy.              |                               |
| direction due to a change in  |                               | greater amount of energy.              |                               |
| speed when passing            |                               | The wavelength of EM                   |                               |
| through a transparent         |                               | waves can vary from 10-                |                               |
| material with a differing     |                               |                                        |                               |
| optical density, and          |                               | 12m to 104m, and due to                |                               |
| diffraction occurs when       |                               | their varying properties this          |                               |
| waves pass through a small    |                               | range is split up into                 |                               |
| gap, comparable to or         |                               | categories, from radio                 |                               |
| smaller than the              |                               | waves to micro waves to                |                               |
| wavelength of the wave,       |                               | infrared waves to visible              |                               |
| and as a result spreads out.  |                               | light to ultraviolet light to x-       |                               |
| and as a result spreads out.  |                               | rays to gamma rays. X-rays             |                               |
| Day diagrams can be used      |                               | and gamma rays (and high               |                               |
| Ray diagrams can be used      |                               | frequency UV radiation) are            |                               |
| to chart the progress of      |                               | ionising forms of radiation,           |                               |

|                                                            |                                                                                        | waves when they are<br>reflected, refracted or<br>diffracted.<br>Coloured light interacts in a<br>way that is unintuitive –<br>white light is composed of a<br>spectrum of all of the<br>colours of the rainbow, and<br>prisms can be used to<br>separate out these colours<br>from white light through<br>refraction. There are<br>differential colour effects in<br>absorption and diffuse<br>reflection. |                                                                                    |                                                                                        | jointly referred to as<br>gamma radiation.<br>Different EM waves can be<br>generated in different<br>ways, they have differing<br>uses, and some have<br>dangers associated<br>with their use.<br>Coloured light interacts in a<br>way that is unintuitive –<br>white light is composed of<br>a spectrum of all of the<br>colours of the rainbow, and<br>prisms can be used to<br>separate out these colours<br>from white light through<br>refraction. There are<br>differential colour effects<br>in absorption and diffuse<br>reflection.<br>Ray diagrams can be used<br>to chart the progress of<br>waves when they are<br>reflected, refracted or<br>diffracted.<br>When light passes through<br>convex or concave lenses it |                           |
|------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    |                                                                                        | waves when they are<br>reflected, refracted or<br>diffracted.<br>When light passes through<br>convex or concave lenses it<br>can be used to form real or<br>virtual images, and<br>constructing scale diagrams<br>of this can be used to<br>calculate the magnification<br>of a lens for a given object                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |
|                                                            | NC/Spec coverage                                                                       | NC/Spec coverage<br>Light<br>Sound<br>Energy transfer                                                                                                                                                                                                                                                                                                                                                       | NC/Spec coverage<br>Wave effects<br>Wave properties                                | NC/Spec coverage                                                                       | in a given position. (Triple)<br>NC/Spec coverage<br>Wave properties<br>EM waves<br>Light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NC/Spec coverage<br>Space |
| Understanding<br>that the two fields<br>of electricity and | Associate the brightness of<br>a lamp or the volume of a<br>buzzer with the number and | Electric current as the flow<br>of electric charge from<br>positive to negative around                                                                                                                                                                                                                                                                                                                      | Static electricity as the<br>build- up of net positive or<br>negative charges when | Series and parallel circuits –<br>describing and calculating<br>the difference between | A permanent magnet is often made from a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |

|                      |                              |                                |                               | •                             |                                | WESTON FAVELL ACADE |
|----------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|---------------------|
| magnetism are        | voltage of cells used in the | a circuit, measured in         | certain objects are rubbed    | current flow and potential    | magnetic material such as      |                     |
| fundamentally and    | circuit                      | amperes.                       | together.                     | difference dropped in         | steel.                         |                     |
| invariably linked,   |                              |                                |                               | different branches and        |                                |                     |
| and as a result, the | Compare and give reasons     | The difference between         | Electric fields are present   | different components in       | A permanent magnet             |                     |
| flow of electrically | for variations in how        | current flow in series and     | wherever there is a build-    | series and parallel circuits. | always causes a force on       |                     |
| charged objects      | components function,         | parallel circuits - currents   | up of charge or separation    |                               | other magnets, or on           |                     |
| results in the       | including the brightness of  | add where branches meet        | of positive or negative       | Power is the rate of transfer | magnetic materials.            |                     |
| existence of         | bulbs, the loudness of       | and split where branches       | charges, resulting in forces  | of energy to or from a        |                                |                     |
| corresponding        | buzzers and the on/off       | split, whereas current is the  | between charged objects       | component.                    | An induced magnet only         |                     |
| magnetic fields.     | position of switches         | same at all points in a series | or on charged objects         |                               | becomes a magnet when it       |                     |
|                      |                              | circuit.                       | introduced to an electric     | Power can be calculated       | is placed in a magnetic field. |                     |
|                      | Use recognised symbols       | A complete circuit is          | field.                        | using the power equation P    | The induced magnetism is       |                     |
|                      | when representing a simple   | required for current to flow.  |                               | = I*V                         | quickly lost when the          |                     |
|                      | circuit in a diagram.        | Potential difference,          | The idea of electric field    |                               | magnet is removed from         |                     |
|                      |                              | measured in volts, via         | carrying electrostatic force  | Alternating potential         | the magnetic field. They are   |                     |
|                      |                              | battery and bulb ratings, as   | as a non-contact force;       | difference is supplied by the | only attracted, never          |                     |
|                      |                              | the energy transferred per     | forces acting across the      | mains electricity supply,     | repelled.                      |                     |
|                      |                              | unit charge.                   | space between objects not     | with the neutral wire kept    |                                |                     |
|                      |                              | Potential difference is still  | in contact.                   | at OV and the live wire       | Electromagnetism as the        |                     |
|                      |                              | present even if a circuit is   |                               | alternating between 325V      | magnetic effect of current     |                     |
|                      |                              | broken.                        | Principles of                 | and -325 V.                   | flow, and the factors that     |                     |
|                      |                              |                                | electromagnetism - the        |                               | affect the strength of the     |                     |
|                      |                              | Resistance, measured in        | magnetic effect of a          | An alternating potential      | induced magnetic field –       |                     |
|                      |                              | ohms, as the extent to         | flowing current (potential    | difference power supply       | number of wires/length of      |                     |
|                      |                              | which a component resists      | different alone is            | when connected in a           | wires, size of current, use of |                     |
|                      |                              | the flow of charge;            | insufficient),                | complete circuit results in   | an iron core.                  |                     |
|                      |                              | differences in resistance      | electromagnets as             | an alternating current flow,  |                                |                     |
|                      |                              | between conducting and         | temporary magnets that        | with an 'average' p.d.        | Determining the shape and      |                     |
|                      |                              | insulating components.         | can be switched on and off,   | delivery of 230V (RMS p.d.).  | direction of the magnetic      |                     |
|                      |                              |                                | and that can have their       |                               | field around a current         |                     |
|                      |                              | All components in a circuit    | strength altered.             | Electromagnetism as the       | carrying wire – circular and   |                     |
|                      |                              | as having resistance; able to  |                               | magnetic effect of current    | clockwise using the right      |                     |
|                      |                              | identify and describe the      | DC motors in principle of     | flow and the factors that     | hand grip rule.                |                     |
|                      |                              | function of a range of         | operation only – with a       | affect the strength of the    |                                |                     |
|                      |                              | electrical components and      | current carrying coil of wire | induced magnetic field –      | The interaction of a current   |                     |
|                      |                              | draw their circuit symbols.    | generating its own            | number of wires/length of     | carrying wire's induced        |                     |
|                      |                              |                                | magnetic field which          | wires, size of current, use   | magnetic field with the        |                     |
|                      |                              | Magnetism as a non-            | interacts with an external    | of an iron core.              | magnetic field of an           |                     |
|                      |                              | contact force – north and      | permanent magnetic field      | Determining the shore of      | external permanent             |                     |
|                      |                              | south magnetic poles           | and experiences a force.      | Determining the shape and     | magnet leads to an equal       |                     |
|                      |                              | attract, whereas like poles    |                               | direction of the magnetic     | and opposite force on the      |                     |
|                      |                              | repel.                         |                               | field around a current        | magnet and the wire – this     |                     |
|                      |                              |                                |                               | carrying wire circular and    | is called the Motor Effect.    |                     |
|                      |                              | An appreciation of magnetic    |                               | clockwise using the right     |                                |                     |
|                      |                              | fields by plotting with a      |                               | hand grip rule.               | Using a coil of wire with a    |                     |
|                      |                              | plotting compass,              |                               |                               | split ring commutator and a    |                     |



|                                                                                                                                                                                                                                                             |                  |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                               | WESTON FAVELL ACADEM                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                                             |                  | representation of field lines<br>and their direction.<br>Earth's magnetism, with the<br>iron core of the Earth<br>introducing a planet-wide<br>magnetic field, with<br>compasses used to exploit<br>this for navigation.                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                            | The interaction of a current<br>carrying wire's induced<br>magnetic field with the<br>magnetic field of an<br>external permanent magnet<br>leads to an equal and<br>opposite force on the<br>magnet and the wire – this<br>is called the Motor Effect.<br>Using a coil of wire with a<br>split ring commutator and a<br>U-shaped permanent<br>magnet a uniform circular<br>motion can be achieved<br>using this effect. | U-shaped permanent<br>magnet a uniform circular<br>motion can be achieved<br>using this effect. |                                                      |
|                                                                                                                                                                                                                                                             | NC/Spec coverage | NC/Spec coverage<br>Potential difference and<br>resistance<br>Links to chemistry -<br>Universe                                                                                                                                                                                                                                                                                         | NC/Spec coverage<br>Magnetism<br>Electromagnets                                                                                                                                                                                                                                                                                                                                            | NC/Spec coverage<br>Electric currents<br>Electricity in the home                                                                                                                                                                                                                                                                                                                                                        | NC/Spec coverage<br>Electromagnetism                                                            | NC/Spec coverage                                     |
| Understanding<br>that physics uses<br>models to<br>approximate<br>theories, (given<br>assumptions), and<br>that these are<br>those that best fit<br>the evidence<br>known at a given<br>time, with an<br>appreciation that<br>theories must be<br>testable. |                  | Correct and safe use of<br>apparatus.<br>Identify hazards, risks and<br>precautions.<br>Making and recording<br>observations and<br>measurements.<br>Variables – independent<br>variables, dependent<br>variables and control<br>variables.<br>Explain what repeatable<br>results are.<br>Calculate the mean of a set<br>of results.<br>Make predictions and<br>conclusions from data. | Explain what reproducible<br>results are.<br>Explain why a method is<br>well designed for its<br>purpose.<br>Selecting suitable<br>apparatus.<br>Compare and contrast<br>precision and accuracy.<br>Relating data to<br>hypotheses.<br>Evaluate a method.<br>Suggest and describe<br>appropriate sampling<br>techniques.<br>Variables – independent<br>variables and control<br>variables. | Use and analysis of models<br>and required practical                                                                                                                                                                                                                                                                                                                                                                    | Use and analysis of models<br>and required practical                                            | Use and analysis of models<br>and required practical |



|                                                                                                                             |                  | Explain the importance of<br>controlling variables to<br>ensure validity.<br>Understand that whenever<br>a measurement is made<br>there is always some<br>uncertainty and use the<br>range of a set of<br>measurements about the<br>mean as a measure of | Explain what repeatable<br>results are.<br>Make predictions and<br>conclusions from data.<br>Explain the importance of<br>controlling variables to<br>ensure validity.                      |                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                             |                  | uncertainty.<br>Use a model to develop<br>scientific understanding.<br>Draw scientific diagrams.<br>Describe a method for a                                                                                                                              | Understand that whenever<br>a measurement is made<br>there is always some<br>uncertainty and use the<br>range of a set of<br>measurements about the<br>mean as a measure of<br>uncertainty. |                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                                                                |
|                                                                                                                             |                  | practical procedure.<br>Identify and define<br>anomalous results                                                                                                                                                                                         | Use a model to develop<br>scientific understanding.<br>Draw scientific diagrams.<br>Describe a method for a<br>practical procedure.                                                         |                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                                                                |
|                                                                                                                             | NC/Spec coverage | NC/Spec coverage<br>Links to chemistry - the<br>universe                                                                                                                                                                                                 | NC/Spec coverage<br>Addressed throughout the<br>spec. E.g. through required<br>practicals                                                                                                   | NC/Spec coverage<br>Addressed throughout the<br>spec. E.g. through required<br>practicals                                                                                                             | NC/Spec coverage<br>Addressed throughout the<br>spec. E.g. through required<br>practicals                                                                                | NC/Spec coverage<br>Addressed throughout the<br>spec. E.g. through required<br>practicals                                                                                                                      |
| The ability to use a<br>range of<br>mathematical tools<br>to calculate,<br>manipulate,<br>predict and<br>represent physical |                  | Interpreting and drawing<br>bar graphs to represent<br>categoric data.<br>Describing trends from a<br>bar graph.                                                                                                                                         | Drawing and interpreting<br>line graphs for 2 sets of<br>data.<br>Drawing and interpreting<br>scatter graphs and inferring<br>and describing correlation<br>or the lack of correlation      | The representation of half<br>life on a graph and<br>subsequent calculations<br>Kinetic energy, gravitational<br>potential energy and elastic<br>potential energy can be<br>calculated and proportion | Density as the mass per<br>volume of a substance;<br>different methods of<br>calculating density<br>experimentally, for regular<br>solids, irregular solid and<br>fluids | Using volume and density<br>to perform displacement<br>calculations to find up-<br>thrust in different fluids.<br>Weight as the force objects<br>feel as a result of gravity,<br>which is a field that differe |
| systems and processes.                                                                                                      |                  | Accurately using decimals,<br>estimation, means, symbols<br>including $\alpha$ sign, volumes of<br>cubes, substituting numbers<br>in equations in<br>mathematical calculations.                                                                          | or the lack of correlation.<br>Use of simple prefixes e.g.<br>kilo, centi, mili in<br>mathematical calculations;<br>interconversion between<br>these units.                                 | calculated, and properties<br>or results about an object<br>or system can be found by<br>combining these<br>calculations with the<br>principle of conservation of<br>energy.                          | Ray diagrams can be used<br>to chart the progress of<br>waves when they are<br>reflected, refracted or<br>diffracted.                                                    | which is a field that differs<br>on different planets and<br>stars, and how to calculate<br>the weight due to a given<br>mass in any given<br>gravitational field.                                             |

|                  |                          |                          |                          |                          | Distance-time,<br>displacement - time, speed-<br>time and velocity- time<br>graphs and their uses to<br>describe motion –<br>interpreting these and<br>constructing these;<br>acceleration calculations<br>using speed/velocity and<br>time data or from<br>speed/velocity-time graphs. |
|------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NC/Spec coverage | NC/Spec coverage         | NC/Spec coverage         | NC/Spec coverage         | NC/Spec coverage         | NC/Spec coverage                                                                                                                                                                                                                                                                        |
|                  | Addressed throughout the                                                                                                                                                                                                                                                                |
|                  | course                   | course                   | course                   | course                   | course                                                                                                                                                                                                                                                                                  |